Sign-changing Bubble Towers for Asymptotically Critical Elliptic Equations on Riemannian Manifolds

نویسنده

  • ANGELA PISTOIA
چکیده

Given a smooth compact Riemannian n–manifold (M, g), we consider the equation ∆gu+ hu = |u| ∗−2−ε u, where h is a C–function on M , the exponent 2∗ := 2n/ (n− 2) is the critical Sobolev exponent, and ε is a small positive real parameter such that ε→ 0. We prove the existence of blowing-up families of sign-changing solutions which develop bubble towers at some point where the function h is greater than the Yamabe potential n−2 4(n−1) Scalg.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for Nonlinear Elliptic Equations on Compact Riemannian Manifolds

Let (M, g) be a smooth, compact Riemannian n-manifold, and h be a Hölder continuous function on M . We prove the existence of multiple changing sign solutions for equations like ∆gu + hu = |u| ∗−2 u, where ∆g is the Laplace–Beltrami operator and the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint.

متن کامل

Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds

In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.

متن کامل

Sign-changing Solutions to Elliptic Second Order Equations: Glueing a Peak to a Degenerate Critical Manifold

We construct blowing-up sign-changing solutions to some nonlinear critical equations by glueing a standard bubble to a degenerate function. We develop a new method based on analyticity to perform the glueing when the critical manifold of solutions is degenerate and no Bianchi–Egnell type condition holds.

متن کامل

Nodal solutions to quasilinear elliptic equations on compact Riemannian manifolds

We show the existence of nodal solutions to perturbed quasilinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds. A nonexistence result is also given.

متن کامل

Some Elliptic Pdes on Riemannian Manifolds with Boundary

The goal of this paper is to investigate some rigidity properties of stable solutions of elliptic equations set on manifolds with boundary. We provide several types of results, according to the dimension of the manifold and the sign of its Ricci curvature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013